Inferential Statistics & Hypothesis Testing

Inferential statistics help draw conclusions from data using probability-based tests.

1. Correlation Analysis (Checking Relationships)

  • Pearson’s Correlation (For Continuous Data):
    r
    cor(data$Age, data$Salary) # R
    data[['Age', 'Salary']].corr() # Python
  • Spearman’s Correlation (For Ranked Data)
    r
    cor(data$Rank1, data$Rank2, method="spearman") # R

2. T-Test (Comparing Two Groups)

  • SPSS: Analyze > Compare Means > Independent-Samples T Test
  • R Example:
    r
    t.test(Salary ~ Gender, data = data)
  • Python Example:
    python
    from scipy.stats import ttest_ind
    ttest_ind(data['Salary'][data['Gender']=='Male'], data['Salary'][data['Gender']=='Female'])

3. ANOVA (Comparing More Than Two Groups)

  • SPSS: Analyze > Compare Means > One-Way ANOVA
  • R Example:
    r
    anova_model <- aov(Salary ~ Department, data = data)
    summary(anova_model)
  • Python Example:
    python
    from scipy.stats import f_oneway
    f_oneway(data['Salary'][data['Department']=='HR'], data['Salary'][data['Department']=='IT'])

βœ… Tip: Use ANOVA for 3+ group comparisons and T-Test for 2-group comparisons.


πŸ“Œ Step 5: Regression Analysis (Predictive Modeling)

Regression helps predict relationships between variables.

1. Linear Regression (Predicting a Continuous Variable)

  • R Example:
    r
    model <- lm(Salary ~ Age + Experience, data = data)
    summary(model)
  • Python Example:
    python
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    X = data[['Age', 'Experience']]
    y = data['Salary']
    model.fit(X, y)
    print(model.coef_)

2. Logistic Regression (Predicting Binary Outcomes)

  • R Example:
    r
    model <- glm(Promotion ~ Age + Experience, data = data, family = "binomial")
    summary(model)
  • Python Example:
    python
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression()
    model.fit(X, y)

βœ… Tip: Use linear regression for continuous outcomes and logistic regression for categorical outcomes.


πŸ“Œ Step 6: Data Visualization

1. Using Tableau for Dashboards

  • Import data into Tableau
  • Drag & drop fields to create bar charts, scatter plots, heatmaps
  • Use filters for interactive dashboards

2. Visualizing in R (ggplot2)

r
library(ggplot2)
ggplot(data, aes(x=Age, y=Salary)) + geom_point() + geom_smooth(method="lm")

3. Visualizing in Python (Matplotlib & Seaborn)

python
import seaborn as sns
sns.scatterplot(x="Age", y="Salary", data=data)

βœ… Tip: Data visualization helps in interpreting patterns and communicating findings effectively.


πŸ“Œ Summary: Quantitative Data Analysis Workflow

βœ… Import & Clean Data β†’ βœ… Descriptive Statistics β†’ βœ… Inferential Tests (T-Test, ANOVA, Regression) β†’ βœ… Visualize & Interpret Results

πŸš€ Need help with data analysis? Our experts at StatisticsProjectHelper.com specialize in SPSS, R, Python, Stata, and Tableau for quantitative data analysis, predictive modeling, and research projects. Contact us today!